Adaptive finite element solution of the porous medium equation in pressure formulation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dipole Solution for the Porous Medium Equation

We establish the existence and uniqueness of the Dipole Solution of the porous medium equation (PME), i.e. the solution of u t = (juj m?1 u) ; in Q = f(x; t) : x = (x i) 2 R N ; t > 0g ; with m > 1 and initial value u(x; 0) = M @ @x 1 (x) ; where is Dirac delta function in R N and M 6 = 0. It has the self-similar form u(x; t) = t ? U(xt ?) ; with exponents and determined from dimensional consid...

متن کامل

Numerical Simulation for Porous Medium Equation by Local Discontinuous Galerkin Finite Element Method

In this paper we will consider the simulation of the local discontinuous Galerkin (LDG) finite element method for the porous medium equation (PME), where we present an additional nonnegativity preserving limiter to satisfy the physical nature of the PME. We also prove for the discontinuous P0 finite element that the average in each cell of the LDG solution for the PME maintains nonnegativity if...

متن کامل

The adaptive multilevel finite element solution of the Poisson-Boltzmann equation on massively parallel computers

Using new methods for the parallel solution of elliptic partial differential equations, the teraflops computing power of massively parallel computers can be leveraged to perform electrostatic calculations on large biological systems. This paper describes the adaptive multilevel finite element solution of the Poisson-Boltzmann equation for a microtubule on the NPACI IBM Blue Horizon supercompute...

متن کامل

Adaptive finite element simulation of Stokes flow in porous media

The Stokes problem describes flow of an incompressible constant-viscosity fluid when the Reynolds number is small so that inertial and transient-time effects are negligible. The numerical solution of the Stokes problem requires special care, since classical finite element discretization schemes, such as piecewise linear interpolation for both the velocity and the pressure, fail to perform. Even...

متن کامل

Modeling analytical ultracentrifugation experiments with an adaptive space-time finite element solution of the Lamm equation.

Analytical ultracentrifugation experiments can be accurately modeled with the Lamm equation to obtain sedimentation and diffusion coefficients of the solute. Existing finite element methods for such models can cause artifactual oscillations in the solution close to the endpoints of the concentration gradient, or fail altogether, especially for cases where somega(2)/D is large. Such failures can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Methods for Partial Differential Equations

سال: 2019

ISSN: 0749-159X,1098-2426

DOI: 10.1002/num.22347